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I. Introduction 
Trigonometric Fourier series have many applications, among others in solving some problems with (partial) 

differential equations, especially concerning heat conduction problems (see for example [1], [2], [3]). In such 

cases one or two of the following series occur:                                                          
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where:  (1) all the series are assumed to be convergent; (2) the coefficients , , ,k k k ka a b b  represent  

suitable Fourier transforms of an analyzed function; (3) and the further analysis of the above series is limited to 

[0,1]x , since (3a) each function may be presented as a sum of its even and odd parts 

( 1 1( ) [ ( ) ( )] [ ( ) ( )]
2 2

f x f x f x f x f x      ), (3b) cosine is an even function and sine is an odd 

one, and (3c) cosine and sine are both periodical functions (in some cases this limitation follows immediately 

from the meaning of the considered problem).  

In order to obtain detailed information from the Fourier series (representing the solution of a given 

problem), usually it is necessary to perform some numerical calculations. Two problems then arise: (1) 

approximation of real values of  independent variable x by rational numbers, and (2) criteria of approximation 

of the series by finite sums within a given accuracy.  

The solution to the first problem is known and used in all numerical calculations: each real number can be 

approximated with arbitrarily assumed accuracy by a rational number, i.e. by the ratio /p q , where p and 

q stand for integers. Therefore in order to determine values of the series given by Eqs.(1.1)  within a given 

accuracy it is sufficient to determine their values for variable x belonging to a sufficiently dense set of  rational 

numbers. In our case, it is therefore sufficient to determine values of the considered series for a suitable set of 

rational values of variable 

(1.2)                                                     , 0 0
p

x p q
q

    .  

Thus, in further course the following series will be considered (the argument /x p q  will not be notified, for 

simplicity):   
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,   

with p and q  satisfying Ineq.(1.2).   

    The aim of this paper is to solve the second problem  mentioned above for some series of the type  (1.3), i.e. 

to find  possible general approximations of such series by finite sums and accuracy criteria for these 

approximations.    

      

II. Simple transformation 
Each of the trigonometric functions in Eqs.(1.3) periodically change the sign and repeat its absolute value 

with increasing k ,  i.e. the following relationships take place:         
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Using these relationships one may rewrite each series (1.3) in the two following forms:          
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The first form does not require any additional assumptions on the considered series, since the series is 

summated term by term without changes of summation order. The second form does not change the value of the 

series if it is absolutely converging, because summation breaks the order of summation of the initial series.  

However the truncated second form is always equal to the truncated  first one (at the same level), because 

final sum is independent of  the order of summation. Additionally,  criteria  for treating the first form as an 

alternating series are more complicated and generally difficult to satisfy (see Remark 1 in Sec.4), whereas  the 

second form  has simpler structure and is more convenient in applications. For this reason the further analysis 

will be limited to the second form only.  

The second form of (2.2) allows the initial series to be approximated by a finite sum of suitable 

approximated alternating  series. This approximation will be discussed in Sec.4.  

  

III. On another note 
The second form of  (2.2) may be especially useful  for  series of the type 
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and relative truncation error as  
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(approximated equality holds if NR  is sufficiently small as compared to NS ).  

 

IV. Towards alternating  series 
The second form of (2.2) represents  alternating series (see Appendix), if (sufficient conditions at a given 

p  and q ): 

– p is an odd integer and the terms knAl  (with 
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constitute a  positive decreasing sequences (with respect to n ): 

(4.2)                                                  
( 1) 0 , 1, 2, 3, 4kn k nAl Al l   , 

respectively; 

– or p is an  even integer and the terms knAl constitute alternating decreasing sequences (with respect to n ): 

(4.3)                        
( 1)( 1) | | , | | | | , 1, 2, 3, 4 ,n

kn kn kn k nAl Al Al Al l     

respectively.    

 

      Remark 1: Analogous conditions may be formulated for the first form of (2.2). Then it will be seen that 

such conditions depend on the structure of the considered series and values of p and q , and it is not always 

possible to satisfy them, whereas conditions for the second form of (2.2) are independent of p and q . 

 

      In conclusion:  If the above conditions are satisfied, then the initial series of (1.3) may be transformed into a 

finite sum of an alternating series. 

  

V. Approximation of Fourier series as transformed into alternating series 
Usually, numerical information from a given series is obtained through approximation by a suitable finite 

sum using the truncated series. In our case these truncated series are given by the second form of (2.2) with the 

second sums limited to truncation level N instead of  .                 

 

      Remark 2: These truncated series are equal to initial ones (1.3) truncated at level K  (after the K -th term), 

i.e. with the sums limited to K instead of  ,  with  

(5.1)                                                                 ( 1) .K N q   

Series (2.2) may be treated as alternating series (see Appendix), if the criteria mentioned above [see Eqs. 

(4.2)] are satisfied. In the simple approach such series may be estimated by finite sums NF  and 1NF   being the 

alternating series truncated after the N -th and the   ( 1)N  -th terms, respectively (see Appendix). However, a 

more accurate approximation of such series is proposed here (see Appendix).  Applying this proposal the series 

occurring in (2.2) [or in compact form in (2.2’) (see footnote 
4

)] may be approximated as follows:  
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where k  and k  are given by Eqs.(1.1).   

The (relative) errors of these approximations (as referred to | |NF )  may be generally estimated as follows:  
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respectively.  These errors are four times smaller than the estimated general truncation errors.   

 

      Remark 3: See Remark A2 in Appendix.  

 

      Remark 4: Of course, level N of a given approximation should be determined according to an assumed 

accuracy of approximation.   

  

VI. Sample computing 
As an example we present a few results of numerical analysis to the series:  

(6.1)                                                      
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After the simple transformation  presented in Sec.2 with p assumed to be an odd number it may be rewritten in 

the form of the following finite sum of alternating series [see Eq.(2.2) 1 ]:  

(6.2)                                      
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(the second form is adopted as more convenient for analysis).  

 

     Remark 5:  We will use truncated series, therefore the requirement of absolutely converging of series (6.1) 

to be transformed into series (6.2) is not important (final sum is independent of the summation order), although 

series (6.1) is absolutely converging.  

 

First of all we shall illustrate the accuracy of approximation (5.2)  for 0.01 , 0.05 , 0.1t   and 

/ 1/10 , 1/ 4 , 1/ 2 , 3/ 4 , 9 /10p q   (with possible cases of /mp mq ). We assume that the estimated 

relative error of  this approximation does not exceed 
* 55 10O   (this  corresponds to the accuracy of 

numerical evaluation in round to 5 digits). In each particular case level N of the approximation satisfying the 

assumed accuracy is found [and corresponding level ( 1)K N q  ] with corresponding  estimated error 

N . For comparison there were computed also: the exact values of series (6.1), the values of truncated series 

NF [and K NF F  with ( 1)K N q  ], estimated error | ( ) / |N N NF F F   [ | ( ) / |K K KF F F   , 

 with ( 1)K N q  ].  

      In addition, each alternating series (6.2)  is of the type (3.1) with  
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(6.3)                         
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[the ratio of the ( 1)n  -th term to the n -th is the greatest one for 0n  ]. Therefore the (relative) error of 

truncation of series (6.2)  on level N may be estimated  according to (3.3) as  
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The values of these estimated errors are also included in the Tables, with the values of max  for orientation.        

All the results of these calculations are given in Tables 1, 2 and 3. Suitable numbers are given in round to 5 

digit (although calculations were  performed with suitable higher accuracy, in some cases in round even to 200 

digits, if it was necessary).          

 

 

 

 

 

 

Appendix.       On alternating series and their approximations 

Alternating series ( S ) is understood as a (convergent) series of the type:  

(A.1 )                     1
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S c c c n c






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the latter relationship is the condition for  convergence of the series (according to the Leibniz criterion).        

         Remark A1: A little more general (converging) series with the condition  

1 0 0 00 , , 1, 2, ...n nc c n n n n      instead of (A.1) 2  may be treated as the sum of a finite sum and 

an  alternating series as defined above.  

      If S  is truncated at an even level 2N j  (i.e. after the N -th term) then it may be estimated as follows. 

Since  
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Since    

(A.4)                                                       1 ( 1)N

N N NS S c   , 

therefore the absolute error of truncation of S  at level N  cannot exceed the last term Nc  taken into account 

(the last term of NS ). The relative error of such a truncation (as referred to the smaller NS  , i.e, to 

min
1 [1 ( 1) ]

2
N

N N NS S c    ) may be estimated as follows:  
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min

ˆ N
N

N

c

S
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Table 1. 

Table 2. 

Table 3. 
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      However, S may be approximated a little more exactly (and therefore also the approximation error may be 

estimated a little more precisely as compared to the truncation error). In order to find such a general 

approximation we divide  S  as follows:  

(A.6)                                          
1

1

( 1) , ( 1) ( 1) 0N N n

N N N n

n N

S S R R c




 

       ,  

or in details (see Fig.A1.)               

 (A.6’)                                              
2 2 2 2 1 2 2

2 1 2 1 2 1 2 2 2 3

, ... ,

, ... .

j j j j j

j j j j j
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 

    

    
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Since of (A.1) 2,3  the differences of the two neighboring  terms of S constitute a positive monotonically 

decreasing sequence, and therefore generally   

(A.7)                                                                 1N NR R   

for each S . Taking into account (A.2) and (A.4) one may conclude that to obtain better approximation of S (as 

compared to NS ) it is sufficient to add/subtract a fraction of Nc  to/from NS  in the case of odd/even N , 

respectively (see Fig.A.1). Thus, one has to consider the following approximation:  

(A.8)                                  
1( 1) (1 )( 1) , 0 1x N N

N N N N NS S S xc S x c x          .  

The (absolute) error of  such an approximation is  

 (A.9 )                                              1| | | (1 ) |x x

N N N N NS S R x c xc       ,  

where  (A.8) 2 ,  (A.6) with  (A.4), and the estimation 
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N N N m N
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



 
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are used. Since of (A.7) and (A.4) the following relationships take place: 

(A.11)                                                                    
11

1
2

N

N

R

c

   

and  therefore the quantity 

(A.12)                                                            1 (1 )
x

N N

N N

R
x

c c


    

has the lowest  upper limitation in the whole domain of 1N

N

R
c

 [(see (A.11)] for 1
4

x   (see Fig.A.2).     

      
    Thus, the best general approximation of S is  
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1 3
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4 4

N N
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The (absolute) error of this approximation   
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3 3 1
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Fig.A.2

. 

Fig.A.1

. 
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[where the estimation (A.10) is used] does not exceed ¼ of the last term taken into account. The relative error 

(as referred to the smaller NS , i.e, to min
1 [1 ( 1) ]

2
N

N N NS S c    )  

(A.15)                                                              

min

1

4

N
N

N

c

S
   

is four times smaller than the estimated truncation error [cf. Ineq.(A.5)].  

        

      Remark A2: In particular case of alternating series of type (3.1) the truncation at the level N  may generate 

smaller estimated error (3.2) as compared to (A.15), if 1/2   [but if   approximation (A.13) is applied 

instead of a truncation , then the estimated approximation error is smaller if 1/5  !] .    
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Table 1. 0.01t   

/p q       
*)F  N      N  K      

**)

K      N

      max  

1/10  1.6970   1  
79.98 10  20  

207.10 10  
112.65 10  

67.18 10  

1/ 4  

 

3/12  

0.49455   2  

 3  

 1  

46.68 10  
71.11 10  
71.11 10  

 

16  

24  

 

123.17 10  

261.26 10  

 

84.56 10  

142.78 10  

 

0.0936  

86.29 10  

1/ 2  

 

3/ 6  

 

5/10  

0.091303   3  

 4  

 1  

 2  

 1  

49.13 10  
52.61 10  

49.40 10  
92.01 10  
73.42 10  

 

10  

 

18  

20  

 

61.35 10  

 

171.45 10  
213.63 10  

 

54.61 10  

 

112.16 10  
121.36 10  

 
***)

0.454  

 

0.00876  
67.18 10  

3/ 4  

 

9 /12  

0.499998   2  

 3  

 1  

41.22 10  
82.02 10  
82.03 10  

 

16  

24  

 

135.79 10  
272.30 10  

 

98.34 10  
155.08 10  

 

0.0936  
86.29 10  

9 /10  0.500000   1  
63.38 10  20  

192.35 10  
119.00 10  

67.18 10  
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 *) Also  [N KF F with ( 1)K N q  ] and NF , since all these quantities are equal within  

an accuracy of 
* 55.10O  . For example: for / 1/ 4p q    

           F =  – 0.494554289 , 

           4F =  – 0.494554958 , 

          4F =  – 0.494542027 .  

   **) K N   with ( 1)K N q  . 

   ***) Note that in this case max 1/5   (see Remark A2).  

 

Table 2. 0.05t   

/p q      
*)F  N          N  K            

**)

K        N

     max  

1/10  0.70004   1  
273.97 10  20  

954.17 10  
523.04 10  

261.91 10  

1/ 4  0.42298   1  
61.83 10    8  

187.30 10  
115.27 10  

67.18 10  

1/ 2  

 

 3/ 6  

0.13854   1  

 2  

 1  

46.72 10  

83.48 10  

143.47 10  

 

  6  

12  

 

131.39 10  

427.12 10  

 

103.74 10  

261.92 10  

 

0.0193  

115.16 10  

3/ 4  0.42373   1  
61.83 10    8  

187.29 10  
115.26 10  

67.18 10  

9 /10  0.47505   1  
275.85 10  20  

956.14 10  
524.48 10  

261.91 10  

 

*) Also [K NF F with ( 1)K N q  ] and NF , since all these quantities are equal in  

round to 5 digits. For example for / 1/ 2p q   

            F = – 0.1385388050957 

           2F  = – 0.1385388050958 

           2F = – 0.1385388002810 .   

   **) K N   with ( 1)K N q  . 

 

Table 3. 0.1t   

/p q      
*)F  N       N  K        

**)

K        N

       max  

1/10  0.37016   1  
538.78 10  20  

1892.42 10  
1031.29 10  

523.67 10  

1/ 4  0.26345   1  
111.29 10    8  

355.12 10  
212.67 10  

115.16 10  

1/ 2  0.019296   1  
61.80 10    4  

141.92 10  
115.16 10  

43.72 10  

3/ 4  0.26345   1  
111.29 10    8  

355.12 10  
212.67 10  

115.16 10  

9 /10  0.33894   1  
539.59 10  20  

1892.64 10  
1031.41 10  

523.67 10  

 

*) Also  [K NF F with ( 1)K N q  ] and NF , since all these quantities are equal in  

round to 5 digits. For example for / 1/ 2p q   

                 F = – 0.01929616426850083674 , 

        11F F  = – 0.01929616426850046583 . 

   **) K N   with ( 1)K N q  . 
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Fig. A1. Interpretation of  (A.3) for 2N j  (a) and 2 1N j   (b) [see (A.6’)] 

 

 

Fig.A.2.  Optimization of error 
x

N  


